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Abstract Composition cork can be regarded as an inter-

esting solution for light-damped sandwich panels. Despite

the emergent interest on these materials for structural

applications, there is a lack of information concerning its

static and dynamic properties. This study presents a com-

parative study on a set of different experimental character-

ization methodologies applied on a selected agglomerated

cork for vibration damping applications. The obtained

results support the assumption of an air spring/viscous-based

mechanism ruling the low-frequency behaviour of these

materials. This assumed behaviour is a result from the

observations of the cellular microstructure of natural and

composition corks. Indicative values for the Young’s mod-

ulus, storage modulus and loss factor are provided as results

from this study. In addition, a multilayer beam finite element,

based on a mixed formulation, is proposed to be applied in an

inverse characterization methodology and to be used also for

the experimental validation tasks. The finite element proved

to be efficient and accurate.

Introduction

Composite materials have been widely used in state-of-the-

art structural applications, such as in the automotive,

aeronautical and aerospace structural engineering fields,

providing interesting and valuable stiffness/mass ratios,

where they have been responsible for important progresses

in design enhancement, safety and durability improvement

and cost reduction, either in terms of manufacturing or

operation and maintenance. The valuable performance of

laminate composite structures in static or dynamic condi-

tion applications has motivated a continuous development

on new materials and laminate configurations, improved

and cost-effective manufacturing processes and, specially,

on more efficient modelling and design methods.

An interesting laminate configuration, usually referred

to as sandwich panel, combines the high stiffness of the

external layers with an adequate internal core, which, for

instance, can be deliberately designed to provide a signif-

icant material damping capability. Such configuration

enables an interesting combination of a highly resistant

material applied in the skins and a core material able to

dissipate large amounts of energy, usually as heat, thus

reducing the structure vibration energy, which provides an

efficient and inherent passive dynamic control. Such lam-

inate materials have been gradually applied in some high-

end and critical structures, like aeronautic components,

aerospace frames and panels, among other justifiable

applications. However, the continuous need for safer, qui-

eter, reliable and cost-effective structures has motivated the

structural design community, especially those acting on the

transportation field, to face these damped sandwich struc-

tures as promising solutions to succeed towards this goal.

Soft elastomers with a high loss factor are the materials

mostly applied in surface or sandwich damping treatments

[1–3]. Despite offering a reduced mass and an important

damping capability, the success of the application of these

materials is often diminished when required to operate

under a wide working temperature range. In such a case, it

is impossible to design an effective single-layer damping
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treatment of sandwich panel, becoming necessary to create

a large assembly of several viscoelastic materials providing

different transition temperatures to accomplish the entire

temperature range [4]. Moreover, the uppermost tempera-

ture limit of these structures is usually low, due to the

material degradation process, which rules out the use of

these damping solutions in high-temperature applications,

like exhaust systems, engine parts, or even parts that,

working at room temperatures, are intensively heated by

the sunlight, like automotive roof panels.

Recently, the use of natural cork, or more precisely

specially formulated composition corks, has been regarded

as a promising solution for damping cores in sandwich

constructions [5], providing a useful damping capacity over

a broad temperature range. In addition, these materials

present an extensive set of interesting capabilities, like its

low weight, approximately one-tenth of the one presented

by viscoelastic materials, its high chemical resistance, and,

especially, its broadly acclaimed thermal insulation and

acoustic attenuation characteristics, with noteworthy

impact in automotive and aeronautical applications. Fur-

thermore, composition corks are easily formulated to attain

a specific and homogeneous set of properties and can be

easily machined or cut. Since for some countries this

material plays an important role in export budget, there is a

growing effort to enlarge its application field.

The assessment of the damping characteristics of com-

position cork applied in the core of sandwich beams has

been investigated by Dias Rodrigues and Moreira [6],

considering these materials as frequency-dependent visco-

elastic materials. Experimental material characterization

studies [5] suggest the suitability of such generalized

hysteretic damping constitutive model. However, the reg-

ular cellular structure of the cork, presenting partially

closed cells, as well as the irregular macro granular

structure of the agglomerate, proposes the possibility of a

considerable contribution from a viscous damping mecha-

nism onto the global damping capability, with special

relevance for the low frequency range.

Experimental characterization data for natural and

composition corks is limited to a small set of published

studies [7–17]. Furthermore, since composition corks are

available in the market in a wide range of material for-

mulations, with variations on the cork grain size, cork

density, agglomerate density and adhesive material, a ref-

erence for composition cork properties is not available in

the literature or in material databases. In this study, both

static and dynamic characterization procedures are applied

to define a reference value interval for the complex

modulus of a selected composition cork material (Ref.

8003—see Appendix), which proved to be a promising

solution for structural passive damping solutions [5, 6].

In addition to the material constitutive model issues, the

numerical simulation of sandwich structures—in this par-

ticular case, shear deformable beams—requires also a

representative spatial model able to account for the skin/

core interrelation, especially when these parts present a

high modulus ratio. For such modulus ratio conditions,

which can reach values higher than 1000:1, the shear

deformation pattern to which the core is subjected to

represents an important role in the sandwich beam flexural

stiffness and damping capacity. For this purpose, layered

models [18] and layerwise models [19–21] can be effi-

ciently applied since this modelling approach is based on a

piecewise description of the displacement field along the

beam/plate thickness direction, allowing the direct pre-

scription of the interlayer displacement continuity condi-

tions. However, this purely displacement layerwise model

does not impose directly any constraint for the stress and

strain fields distribution, especially under the natural stress

and strain interlayer continuity conditions. In this study, a

hybrid formulation [22], considering both the displacement

and the stress fields, is applied to enable an accurate dis-

tribution and prescribed continuity of the stress field along

the thickness and between the adjacent layers. An experi-

mental study with sandwich beams with a composition

cork core is developed to validate the proposed model and

assess the damped sandwich concept with composition

cork cores feasibility.

Finite element formulation

The finite element hereby proposed is a laminate beam

element in which each generic layer is physically repre-

sented by a four node bi-dimensional plane stress finite

element. The aim of this finite element formulation is to

ensure the continuity of the shear stresses along the sand-

wich thickness, an issue that is not directly imposed, and

thus not really ensured, with the displacement-based

solutions.

As described, each individual finite element represent-

ing a generic layer of the laminate domain has four corner

nodes, where the longitudinal degrees of freedom u1, u2, u3

and u4 are defined (Fig. 1). Two additional degrees of

freedom, the transversal displacements wi and wj, are

defined for the laminate finite element and are located in a

pair of auxiliary nodes, i and j. These nodes do not describe

the element geometry and are located at the mid side of

vertical edges of the finite element (Fig. 1).

In order to define the entire beam finite element, the set

of finite elements representing each individual layer is

assembled in the thickness direction considering that the

deformation along the thickness direction is negligible, i.e.
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the wi and wj degrees of freedom are shared between all the

layer finite elements for the same beam finite element.

When dealing with low order finite elements, the stiff-

ness matrix formulation may suffer from a locking effect

(shear or trapezoidal locking). This numerical pathology

can be circumvented by using reduced or selective inte-

gration [23], which has the drawback of originating a rank

deficiency in the stiffness matrix, limiting the finite ele-

ment performance due to the resulting spurious energy

hourglass modes [24]. However, it is possible to render the

element free from those instability modes by adopting

stabilization methods [24].

In the finite element formulation being proposed, the

uncoupled definition for the transverse displacement and

the section rotation introduces a constraint in the dis-

placement field and reduces the deformation modes sub-

space. In addition, and contrary to the uniform reduced

integration, the use of the selective integration scheme

herein adopted, where only the transverse shear component

is evaluated through one integration point, retains the

correct rank of the element stiffness, and consequently the

rank of the global stiffness matrix [23].

Displacement field

As mentioned, the finite element representing each layer

has four corner nodes plus two auxiliary nodes necessary to

define a uniform transverse displacement for all the ele-

ments or layers along the transverse section. The assump-

tions considered in the present formulation are synthesized

as follows:

• The four corner nodes of the element are used to define

only the inplane displacement, u;

• The element is considered to be incompressible along

the transverse z-direction;

• The transverse displacement, w, is uniform along

coordinate z for each x-constant and is defined by

interpolation functions with reference to additional

nodes i and j; it is x-coordinate dependent.

With these assumptions, the definition of the displace-

ment field is reported to a problem in plane elasticity where

u(x, z) and w(x) are, respectively, the longitudinal and the

transverse displacements. The displacement field within the

finite element domain is determined using an interpolator

operator onto the nodal values as follows:

uðx; zÞ ¼ N1xN1zu1 þ N2xN2zu2 þ N3xN3zu3 þ N4xN4zu4

wðxÞ ¼ Niwi þ Njwj ð1Þ

The abovementioned interpolation functions are defined

as

N1z ¼ N4z ¼
1

h
zþ h

2

� �
N1x ¼ N2x ¼ Ni ¼ �

1

L
x� L

2

� �

N2z ¼ N3z ¼ �
1

h
z� h

2

� �
N3x ¼ N4x ¼ Nj ¼

1

L
xþ L

2

� �

ð2Þ

where x [ [-L/2, L/2] and z [ [-h/2, h/2], with L and h,

respectively, being the length of the finite element and the

thickness of the layer (as described in Fig. 1). It is noted

that the displacement w only depends upon the x coordinate

while u depends on x and z coordinates.

The displacement field described by (1) can be defined

in a matrix form as

u x; zð Þf g ¼ N x; zð Þ½ � df g ð3Þ

where df g represents the generalized displacement vector:

df g ¼ wi u1 u2 wj u3 u4f gT ð4Þ

and the matrix N x; zð Þ½ � represents the interpolation oper-

ator described by the shape functions (2).

Strain field

The strain field of the four-node beam finite element is

defined assuming plane stress conditions and linear elastic

deformation, as

e x; zð Þf g ¼ exx

cxz

� �
ð5Þ

where exx and cxz are, respectively, the normal and the shear

strains. The strain field can be obtained by applying the

differential operator L½ � onto the displacement field (3) as

e x; zð Þf g ¼ L½ � N x; zð Þ½ � df g ¼ B x; zð Þ½ � df g ð6Þ

where B x; yð Þ½ � is the deformation matrix defined by the

membrane and bending strain BB
� �

and shear strain

BS
� �

terms.

Stress field

In the finite element under consideration in this study, the

stress field is defined independently from the strain field,

following a procedure similar to the displacement field

Fig. 1 Four-node beam finite element with two auxiliary nodes (i, j).
a Beam laminate and b generic layer finite element
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description. Therefore, the stress field inside the finite element

domain is interpolated from the nodal stress variables, as

r x; zð Þf g ¼ Nrðx; zÞ½ � rf g ð7Þ

where the nodal stress vector rf g is described by the stress

nodal parameters:

rf g ¼ rx1 rx2 rx3 rx4 sxz1 sxz2 sxz3 sxz4f gT ð8Þ

and the stress related interpolation matrix is defined by the

set of terms:

Nrðx; zÞ½ � ¼ N1xN1z N2xN2z N3xN3z N4xN4z½ � ð9Þ

using the same interpolation operator applied onto the

displacement field.

Variational formulation

After the definition of the displacement, strain and stress

fields, the constitutive operator can be applied to describe

the stress–strain relation as

r x; zð Þf g ¼ D½ � e x; zð Þf g ð10Þ

where D½ � is the elasticity matrix containing the elastic

properties of the material (the Young’s modulus E and the

Poisson’s ratio m, or alternatively, the shear modulus G).

An alternative formulation for (10), using the flexibility

concept, is

D½ ��1 r x; zð Þf g ¼ e x; zð Þf g ð11Þ

Following the Hellinger-Reissner variational principle

[25, 26], the total energy results from the superposition of

the elastic strain energy (first term of Eq. 12), the

complementary energy (second term of Eq. 12), and the

work performed by external forces:

PP ¼
1

2

ZL=2

�L=2

Zh=2

�h=2

rf gT D½ ��1 rf g dxdz

�
ZL=2

�L=2

Zh=2

�h=2

rf gT B½ � df g dxdzþWe ð12Þ

The variational form of the equilibrium equation results

from the total energy PP minimization to the nodal stress

and displacement parameters:

oPP

o rf g ¼ 0
oPP

o df g ¼ 0

(
ð13Þ

where rf g and df g are, respectively, the vectors of nodal

stresses and displacements degrees of freedom.

After performing the variations to the nodal parameters

in (13), the following system of hybrid equations for the

finite element is obtained:

Srr½ � 0½ � Srd½ �
0½ � Sss½ � Ssd½ �

Srd½ �T Ssd½ �T 0½ �

2
4

3
5 ref g

sef g
def g

8<
:

9=
; ¼

0f g
0f g
Fef g

8<
:

9=
; ð14Þ

where the finite element degrees-of-freedom vectors are

defined as

ref g ¼ rx1 rx2 rx3 rx4f gT

sef g ¼ sxz1 sxz2 sxz3 sxz4f gT

def g ¼ wi u1 u2 wj u3 u4

� �T

ð15Þ

In the previous equation, the sub-matrices Srr½ � and Sss½ �
are defined as

Srr½ � ¼ D�1
r

ZL=2

�L=2

Zh=2

�h=2

Nrrðx; zÞ½ �T Nrrðx; zÞ½ � dzdx ð16Þ

Sss½ � ¼ D�1
s

ZL=2

�L=2

Zh=2

�h=2

Nssðx; zÞ½ �T Nssðx; zÞ½ � dzdx ð17Þ

These two matrices are obtained with exact integration

and represent the normal and shear stresses flexibility

matrices. The effect of normal stresses on the respective

strains participates in Eq. 14 by the matrix defined as

Srd½ � ¼
ZL=2

�L=2

Zh=2

�h=2

Nrrðx; zÞ½ �T BBðx; zÞ
� �

dzdx ð18Þ

This matrix is also obtained from an exact integration

calculation.

The complementary work performed by the shear

stresses against the shear strains is described by the matrix

equation:

Ssd½ � ¼
ZL=2

�L=2

Zh=2

�h=2

Nssðx; zÞ½ �T BSðx; zÞ
� �

dzdx ð19Þ

where matrix Ssd½ � is calculated using a reduced integration

at point x = z = 0.

The global mixed matrix equation is thus described by

S½ � Xef g ¼ Fef g ð20Þ

where the mixed formulation degrees-of-freedom vector is

defined as

Xef g ¼
rx1 rx2 rx3 rx4 sxz1 sxz2 sxz3 sxz4 wi u1 u2 wj u3 u4

� �T

ð21Þ

The second member of (20) contains the load vector

Fef g:
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Fef g ¼ 0 � � � 0 Qi F1 F2 Qj F3 F4

� �T ð22Þ

where Qi and Qj are transverse shear forces acting uni-

formly along sections x = -L/2 and x = ?L/2, respec-

tively. In addition, F(1…4) are nodal forces along

x-direction (instead of normal stresses treated as

unknowns) for normal stresses at element nodes.

Condensed displacement-based stiffness matrix

Re-writing Eq. 20 in a compact form as

Sss½ � Ssd½ �
Ssd½ �T 0½ �

	 

�ref g
def g

� �
¼ 0f g

Fef g

� �
ð23Þ

it is possible to relate the stress field with the displacement

field as

�ref g ¼ � Sss½ ��1 Ssd½ � def g ð24Þ

Replacing (24) into the second equation of (23), the

condensed form of the equation system is defined as

� Ssd½ �T Sss½ ��1 Ssd½ �
� �

def g ¼ Fef g ð25Þ

The inverse of Sss½ � exists, since this matrix is block-

diagonal, being defined by

Sss½ ��1¼ Srr½ ��1
0½ �

0½ � Sss½ ��1

	 

ð26Þ

With the solution discussed herein, the displacement

vector def g can be calculated from the assembled reduced

form (25). The displacement-based solution can then be

applied to the original assembled mixed form (14),

prescribing additionally the natural shear stresses

boundary conditions at the top and bottom faces of the

beam, to determine the full stress field.

Mass matrix

The consistent form of the mass matrix can be defined as

M½ � ¼ qb

ZL=2

�L=2

Zh=2

�h=2

Nðx; zÞ½ �T Nðx; zÞ½ � dzdx ð27Þ

where q and b are respectively, the mass density (assuming

the material to be homogeneous) and the beam width. The

element matrix organization follows the displacement

degrees of freedom applied in (15).

Alternatively, the lumped mass matrix of a four-node

finite element, as the one hereby formulated to model

each layer, presents a diagonal shape where the leading

diagonal elements are calculated by distributing the total

element mass among the finite element degrees of

freedom, as

M½ � ¼ q � b
4

Lh

2 � � � 0

1

1 ..
.

..

.
2

1

0 � � � 1

2
66666664

3
77777775

ð28Þ

where L and h are, respectively, the length and the thick-

ness of the four-node element.

Damping model

The sandwich beam is formed by a core made of a low

modulus and high loss factor material and two stiff skins

which present a relatively high stiffness and insignificant

damping characteristics. Therefore, the sandwich finite

element model must include a damping operator to repre-

sent the damping effect of the material.

Experimental evidence and published studies [18–20]

indicate that a frequency dependent hysteretic damping

model, usually known as viscoelastic model, can be effi-

ciently used to represent the dissipation mechanism pro-

vided by the viscoelastic materials applied in sandwich

structures as passive vibration control solutions. A recent

study on the composition cork feasibility analysis for

sandwich damping solutions [5, 6] showed that these

materials evidence a nearly constant storage modulus and

loss factor for frequencies above the range of 50–100 Hz

(the study results are limited to the frequency range

(0–400 Hz). Below this frequency limit, the results

obtained revealed a significant dependency of the complex

modulus with the frequency, which can be related to the

viscous-based dissipation mechanism developed by the

cellular structure of the cork and also by the agglomerate

macro structure. Therefore, the application of a frequency-

dependent viscoelastic model can be effectively used to

represent the damping effect of a composition cork.

Similar to the usual viscoelastic materials, the composi-

tion cork can be represented by the complex modulus

approach, where the strain response to a harmonic imposed

stress condition is described by an amplitude ratio, the

storage modulus, E0 xð Þ, and a phase lag, d ¼ tan�1 g xð Þ½ �, as

r ¼ �E xð Þe ¼ E0 xð Þ 1þ jg xð Þð Þe ð29Þ

where �E xð Þ and g(x) represent, respectively, the complex

modulus and the loss factor (ratio between the imaginary

part: the loss modulus, and the real part: the storage

modulus of the complex modulus parameter). Symbol j ¼ffiffiffiffiffiffiffi
�1
p

represents the complex operator.

Since the material storage modulus is assumed to be

frequency dependent, the stiffness matrix of a layer made

from composition cork is thus also frequency dependent.
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Since the Poisson’s ratio dependency with the frequency is

negligible in practice, this material parameter is usually

considered frequency independent and constant. Therefore,

the stiffness matrix for a damping layer with viscoelastic

behaviour can be described as

K xð Þ½ � ¼ E0 xð Þ K0½ � ð30Þ

where E0 xð Þ stands for the storage modulus (real compo-

nent of the complex modulus) and K0½ � represents a fac-

torized stiffness matrix for E0 xð Þ ¼ 1.

The viscoelastic damping model represents the dissipa-

tion component of the material, being directly related to the

loss modulus of the material. Therefore, the damping matrix

is assumed to be proportional to the stiffness matrix, this

proportionality being directly defined by the loss factor g, as

H xð Þ½ � ¼ jg xð Þ K xð Þ½ � ð31Þ

This damping model can be directly introduced in the

equation of motion described in the frequency domain,

which can be straightforwardly solved using a direct

frequency analysis procedure [18] to determine a set of

frequency response functions.

Experimental characterization of a composition cork

Cork presents a cellular structure formed by thin-walled

prismatic cells oriented along the radial direction of the

tree. Figure 2 depicts a scanning electronic microscopy

(SEM) image taken from an Axial-Transversal section of a

natural cork. Such cellular structure presents a homoge-

neous distribution of a 4–9-sided polygon-shaped corru-

gated prismatic cells [8], without intercellular gaps, filled

with a gaseous substance similar to air.

A detailed analysis on the cellular structure reveals that

the cellular voids represent most of the cork volume, which

justifies its low density and most of its unique properties.

This distinctive structure seems to be also responsible for

the behaviour of the cork under compression and tension,

as well as its dynamic characteristics.

Static characterization

Compressive test

In order to characterize the static compressive behaviour of

the target composition cork, a set of eight small

(20 9 20 9 20 mm) specimens were tested in a Shimadzu

AG-50KNG testing machine using a Shimadzu SLBL-5KN

load cell and a test velocity of 5, 10 and 20 mm/min. Figure 3

represents a set of different stages during a 2 mm/min

compression test on a similar specimen (27 9 26.5 9

20 mm), evidencing not only the remarkable compressive

capacity, but also the insignificant transversal deformation,

which supports the assumption of a null Poisson’s ratio for

deformation levels up to 50–70%.

Despite the heterogeneous nature of the cork, the

experimental results revealed a homogeneous and isotropic

compressive behaviour for specimens taken from the same

composition cork plank. The small size of the cork gran-

ules and the different orientation that these granules

assume inside the agglomerate bulk during transformation

process are responsible for this homogenization process.

Figure 4 represents the load–displacement curves

obtained for a set of specimens, wherein the usual three

compression stages, as described in the literature [8, 11, 14],

are clearly identified. The initial stage reveals a nonlinear

elastic behaviour, resulting from the elastic bending of the

cells walls. This stage is followed by a nearly constant level

plateau, evidencing the effects of a progressive buckling of

the cells walls. Finally, in the third stage, the cork walls

become completely collapsed and the compressive behav-

iour is predominantly ruled by the wall’s material proper-

ties. It is worthy to mention that after the compressive test,

where a deformation up to 80% was imposed, the specimens

recovered almost the initial dimension, presenting a mean

residual deformation lower than 7.5%.

The sequence of images depicted in Fig. 3 evidences the

relatively reduced lateral deformation of the specimens

which, as expected, indicate a reduced value of the material

Poisson’s ratio. This observation is directly related to the

initial and natural wall corrugation presented by the cel-

lular structure of the cork, which also explains the relative

significant difference of the material’s behaviour under

compression and tension loading.

As indicated in the legend of Fig. 4, three different test

velocities were used, and the results obtained proved to be

independent of this parameter, at least within the velocity

range used in this study. In addition, for each constantFig. 2 Scanning electronic microscopy image of natural cork
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velocity subset, different orientations of the cubic specimen

in relation to the axial loading direction were used to

analyse the isotropy characteristics of the material. The

stress–strain relation follows the displacement–load graph

and, for small deformation levels, the initial deformation

stage can be used to describe the composition cork

behaviour (Fig. 5). For this particular material, the stress–

strain relation was assumed to be represented by a fourth-

order polynomial equation (dotted line in Fig. 5) whose

parameters were fitted to the experimental stress–strain

graph within the low deformation range.

According to the results obtained from this set of

specimens, the composition cork herein analysed can be

described by a reference compression of Young’s modulus

of 7.4 MPa (standard deviation: 0.3 MPa).

Tensile test

Using the same equipment and testing conditions as

applied in the compressive test, five tensile specimens were

tested at a test velocity of 5, 10 and 20 mm/min.

Fig. 3 Composition cork compressive test: visual analysis of deformation pattern
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Fig. 5 Compression test stress–strain curve
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The specimen assembly, depicted in Fig. 6, consists of a

composition cork bar (40 9 12 mm section) with a set of

glued aluminium support plates to reduce the fixture effect

and improve the unidirectional stress field.

The specimen was tested in the Shimadzu tension

machine, as illustrated in Fig. 7, using a video extensom-

eter device (Messphysik ME 46NG) to measure the speci-

men uniaxial deformation.

Figure 8 represents the load–displacement curves for the

analysed tensile specimens whereas Fig. 9 depicts the

stress–strain distribution, corresponding mean cubic fit

relation (dotted line) and linear stress–strain relation

describing the Young’s modulus (grey line).

The results obtained, which were satisfactorily corre-

lated, evidenced an initial mean tension modulus of about

17.4 MPa (standard deviation: 1.3 MPa), which is clearly

higher than the modulus obtained from the compressive

test. This observation is in accordance to the information

provided by several researchers [8, 12–14] and, as descri-

bed before, can be explained by the initial corrugation of

the cell wall.

Following the compression test observations, the results

obtained from the tensile test also did not show a clear

dependence upon the deformation velocity within the limits

hereby considered.

Fig. 6 Composition cork tensile specimen

Fig. 7 Tensile testing setup
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Dynamic characterization

Direct identification: semi-definite dynamic system

Considering that the composition cork dynamic behaviour

can be described by a frequency-dependent viscoelastic

model, a vibration-based testing procedure can be used to

identify the material complex modulus. For this purpose, a

special experimental setup, representing a semi-definite

two degrees-of-freedom dynamic system, can be applied

[5]. In this assembly, depicted in Fig. 10, the composition

cork sample, representing the complex stiffness of the

system, �K xð Þ, is inserted between two translating masses,

m1(100 g) and m2(3100 g).

An electro-dynamic shaker (LDS V400), suspended

from an independent rigid frame was used to provide the

system random excitation within the 0–400 Hz frequency

range. An impedance head (Brüel&Kjaer 8200), attached

to the moving mass m1, was used to measure the applied

force and moving mass response. The response of mass

m2 was measured using a piezoelectric accelerometer

(Brüel&Kjaer 4371).

Using both transducers signals, the driving point accel-

erance function, A(x) and the relative transmissibility

function, T(x) (Fig. 11), were obtained by a spectral ana-

lyser (Brüel&Kjaer 2035).

These response functions can be directly applied for the

determination of the extensional complex modulus func-

tion, �EðxÞ, through the relations:

�E xð Þ ¼ h

A

x2m2T xð Þ
1� T xð Þ ð32Þ

�E xð Þ ¼ h

A

x2m2 m1A xð Þ � 1Þð Þ
m1 þ m2ð ÞA xð Þ � 1

ð33Þ

where h and A represent, respectively, the thickness and the

cross-sectional area of the composition cork specimen.

Figures 12 and 13 represent the identified extensional

storage modulus and loss factor functions within the

0–400 Hz frequency range.

Analysing the storage modulus function representation

in Fig. 12, it becomes evident that this characterization is

not representative of the real material behaviour for the low

frequency range; the static modulus within the range

between 7.4 MPa (compression) and 17.4 MPa (tension)

would be expected to be found. This low frequency dis-

crepancy is readily justified since, in this frequency range,

the inertial effect of mass m2 is not enough to provide a

significant deformation of the material specimen and the

semi-definite system performs a rigid body motion. Fur-

thermore, the applied small electro-dynamic shaker is also

unable to supply the required load intensity for such low

frequencies. Therefore, this low frequency data is misrep-

resentative and should be disregarded.

Concerning the loss factor distribution, depicted in

Fig. 13, the assumption of a quasi-constant loss factor

around 10% seems to be acceptable.Fig. 10 Experimental setup for the semi-definite dynamic system
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Inverse identification: free-vibration based

As an alternative to the direct static and dynamic identifi-

cation methods previously exposed, it is also possible to

infer the properties of the composition cork core material

from the static or dynamic response of a sandwich beam (or

plate) as long as the skin properties are assumed to be

accurately identified. Clamped or three-point bending beam

deflection analyses are usual indirect identification meth-

ods of single material or composite beams.

In this analysis, the free vibration response of a clamped

sandwich beam is applied to identify the storage modulus

and loss factor for the fundamental frequency of the beam.

Therefore, to identify the low frequency storage modulus,

incorrectly described in Fig. 12, two sandwich beams,

beam CA and beam CB, were manufactured using

two identical pairs of 1050 aluminium alloy skins (498 9

30 9 2 mm). The composition cork applied in the beam

specimens was taken from the same plank used for the

material characterization study, from which two pieces of

433 9 30 mm, with a thickness of 6.3 mm (beam CA) and

9.3 mm (beam CB), were cut using a high speed saw.

Table 1 presents the aluminium material properties as well

as the assumed or experimentally determined properties for

the composition cork material.

A stiff epoxy adhesive was used to assemble the beams,

and special care was taken to ensure the homogeneous

distribution of the glue along the interface, while mini-

mizing the adhesive layer thickness. In order to improve

the clamping boundary condition, an aluminium block with

the same thickness and width of the core was also glued to

form the clamped root of the beam, as depicted in Fig. 14.

The beam was fixed by using a special fixture applied

onto a rigid breadboard (Fig. 15) leaving a free length of

433 mm. An optical fibber displacement transducer (MTI

KD-300) was applied to measure the tip response to a

prescribed 2-mm tip displacement. The signal conditioning

and analysis was performed in a spectral analyser (DSPT

Siglab 2042).

In order to simulate the test conditions, the time–domain

response of the beam, considering as the initial conditions

the prescribed displacement field, was obtained using the

proposed finite element and a direct integration Newmark

algorithm with an equivalent viscous damping matrix. A

30-beam finite element mesh, with 3 numerical layers, was

used.
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Fig. 13 Loss factor g(x) for the composition cork sample

Table 1 Material properties used in the numerical model

Material Young’s

modulus

Poisson’s

ratio

Density

(kg m-3)

Aluminium 70 GPa 0.32 2710

Composition cork

(Ref. 8003)

To be determined 0.0 205

Fig. 14 Detail on the cantilever beam root

Fig. 15 Free vibration test experimental setup
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Figures 16 and 17 represent the experimental and

numerical time–domain responses for beam CA and beam

CB, respectively.

In order to correlate the experimental and the numerical

results, a storage modulus of 12.0 MPa for the composition

cork was applied for beam CA and 14.2 MPa for beam CB,

with a fundamental natural frequency of, respectively, 37

and 46 Hz. These storage modulus values, which were also

validated in a modal analysis procedure, clearly differ from

those represented by the complex modulus curve obtained

in the electro-dynamic shaker random dynamic test

(Fig. 12), as expected, but agree with the static values

range defined from the compression and tension static tests

results, respectively, 7.4 and 17.4 MPa.

The composition cork density (205 kg/m3) was identi-

fied by weight/volume relation according to standard NP

2372, using several specimens taken from the same raw

material plank. The material loss factor was determined by

adjusting the corresponding numerical parameter towards a

correlation of the numerical curve to the envelope decay of

the experimental response. A common value for both

specimens of 10% was thus determined, which agrees with

the results presented in Fig. 13.

In order to cover the entire frequency range under

analysis, the application of the described methodology on

several sandwich beams with different free lengths and

core/skin thickness ratios would be required. The following

method intends to reduce such experimental effort.

Inverse identification: FRF based

Contrary to the previous identification method, which can

only describe the core material dynamic modulus for the

first natural frequency of the beam, it is possible to identify

the same properties for a broad frequency range from an

available frequency response function measured experi-

mentally, by using a representative analytical or numerical

model in an inverse procedure by adjusting the model

properties to fit the measured data.

When dealing with sandwich beams with viscoelastic

material cores, the Ross–Kerwin–Ungar (RKU) equations

[27] were often considered a valuable solution to identify

the core material’s complex modulus. However, the suc-

cess of such methodology is usually compromised by the

limiting assumptions of the kinematic model on which the

identification procedure is based. In order to overcome

these limitations, numerical models, usually finite element

based, are being currently applied in an iterative optimi-

zation procedure. Moreira and de-Carvalho [28] used a

beam finite element model to identify a composition cork

introduced inside a beam similar to those herein studied.

In order to carry out this identification procedure, two

sandwich beams, beam FA and FB (Fig. 18), with the same

dimensions of those used in the clamped free vibration test,

were freely suspended from a stiff rig to obtain free

boundary conditions.

The sandwich beams were manufactured using the same

materials and methodology adopted for the clamped beams

CA and CB. In this case, the core has exactly the same

length of the skins (498 mm of length). Moreover, since

the core of each beam was taken from the same material

slice used for the clamped beams, these beams have exactly

the same thicknesses as the homologous clamped beams,

i.e., 6.3 mm for beam FA and 9.3 mm for beam FB. The

same epoxy adhesive and bonding methodology were used

to assemble the beams. An equally spaced measurement

mesh of 11 points was considered for each beam.
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Fig. 16 Time–domain displacement response at the beam tip: beam

CA
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CB
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An electro-dynamic shaker (LDS 201) was used to apply

a 0–500 Hz random excitation at point 4 of the beam, and

the excitation force was measured with a miniature force

transducer (Brüel&Kjaer 8203). In order to measure the

beam response at each of the 11 points of the measuring

mesh, a laser vibrometer (Polytec OFV303) was employed

(Fig. 19). A spectral dynamic analyser (Brüel&Kjaer 2035)

was used for the signal conditioning and analysis, and

calculation of the frequency response functions.

The numerical identification procedure is based on a

minimization scheme wherein the numerical model and the

associated material properties are iteratively updated. This

optimization procedure is driven by a correlation analysis

between the numerically generated frequency response

model and the experimental frequency response function

(FRF). More details on this procedure can be found in [28].

In this case, only the storage extensional modulus E0ðxÞ
and the loss factor gðxÞ constant functions for the com-

position cork were considered as optimization parameters,

representing the Poisson’s ratio and the material density as

m = 0.0 and q = 205 kg/m3, respectively.

In order to prove the validity of the fitting approach and

the obtained results, the composition cork properties were

identified considering the beam FA experimental data, and

then the identified properties were used to generate the

numerical frequency response model of the beam FB.

The graphical representation depicted in Fig. 20 over-

laps the fitted numerical driving point FRF on the

corresponding experimental FRF. Figure 21 shows the

Frequency Response Assurance Criterion (FRAC) [29, 30]

herein applied as the correlation indicator driving the fitting

process. The identified properties are storage modulus

E0ðxÞ = 20.8 MPa and loss factor g = 10.6%.

Figure 22 represents the numerical and experimental

driving point frequency response functions for the thicker

beam (beam FB), using the identified material properties in

the numerical model. As evidenced by the graphical

agreement as depicted in Fig. 22 and by the correlation

indicator distribution represented in Fig. 23, there is a good

correlation level between the experimental data and the

numerically generated frequency response model for the

Fig. 18 Free sandwich beams: beam FA and beam FB

Fig. 19 Experimental setup for the free sandwich beam vibration

analysis
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Fig. 20 Driving point frequency response functions for beam FA
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entire set of selected degrees of freedom corresponding to

the lateral displacements.

Characterization data analysis

In order to analyse and compare the results obtained from

the various characterization methodologies adopted and

discussed before, Fig. 24 gathers the previously identified

Young’s modulus (from the static characterization) and

extensional storage modulus (from the dynamic charac-

terization) results.

As shown in the graphical representation in Fig. 24,

there is some discrepancy on the results obtained. Never-

theless, and taking into consideration the remarks on the

results obtained from the discrete system dynamic char-

acterization procedure, it is possible to observe that the

Young’s modulus is different for compression and tensile

deformation. This observation, which was previously

described and justified, agrees with the results and the

cellular analysis presented in the literature.

On the other hand, the storage modulus results evidence

the difficulties of this characterization procedure. As dis-

cussed before, the characterization methodology based on

the discrete system has some limitations which may

compromise the accuracy of the obtained results, namely

the low frequency limitations of the effective load condi-

tions. The procedure based on the analysis of the free

vibration response of a cantilever sandwich beam has

potentially the effects of the clamping conditions which

may affect especially the low frequency natural modes.

However, the results obtained agree with those obtained

from the static characterization, although being slightly

lower than expected, considering the static results.

Finally, the storage modulus constant function identified

through the inverse method is slightly higher than the

storage modulus results obtained from the direct method

using the discrete system dynamic response and the single

frequency results identified from the free vibration

response of clamped sandwich beams. Nevertheless,

despite the slight difference of the obtained results, these

present the same order of magnitude and may provide a

confidence range for the Young’s modulus and extensional

storage modulus for this specific composition cork.

Experimental and numerical analysis of composition

cork sandwich beams

In order to validate the material characterization, a set of

experimental studies were performed on the sandwich

beams with composition cork cores used in the character-

ization study, adopting, however, different boundary con-

ditions. For this purpose, a three-point bending test was

used to evaluate the static characterization of the compo-

sition cork. In addition, in order to clarify the validity of

the results obtained from the dynamic characterization of

the material’s storage modulus, a set of two cantilever

sandwich beams were employed in a frequency response

analysis.
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Fig. 22 Driving point frequency response functions for beam FB

1 2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

Frequency Response Assurance Criterion

F
R

A
C

Degree of freedom

Fig. 23 Frequency response assurance criterion (FRAC) for beam FB

0 50 100 150 200 250 300 350 400
 0

 5

 10

15

20

  7.4MPa

  17.4MPa

  12.0MPa at 37Hz

  14.2MPa at 46Hz

20.8 MPa

Frequency [Hz]

Y
ou

ng
’s

 m
od

ul
us

: E
 / 

S
to

ra
ge

 m
od

ul
us

:  
E

’ [
M

P
a]

 

 

Static compression modulus
Static tensile modulus
Direct identification (from Accelerance)
Direct identification (from Transmissibility)
Inverse identification: free vibration based (beam CA)
Inverse identification: free vibration based (beam CB)
Inverse identification: FRF based

Fig. 24 Global representation of the obtained results

3362 J Mater Sci (2010) 45:3350–3366

123



Three-point bending test

The two sandwich beams FA and FB were tested in a three-

point bending test configuration. Figure 25 presents the test

setup, where the same equipment and testing conditions as

applied in the composition cork characterization was used.

In addition, a Messphysik ME 46 NG video-extensometer

was applied to measure the displacement of the midpoint of

the bottom skin. The beam was placed on two rigid rollers,

leaving a free span of 460 mm between the supports.

The numerical model was then used to simulate the

three-point test, using the composition cork material

properties obtained from the static tests conducted along

this study. An 8-layered, 40-finite-element model was

applied, using six layers to represent the core.

Figure 26 represents the experimental displacement–

load curves for both beams, beam FA and beam FB. The

numerical linear elastic results were obtained considering

an equivalent Young’s modulus of 12.4 MPa calculated as

a mean value of the static results: 7.4 MPa (from the

compression test) and 17.4 MPa (from the tensile test). The

remaining material properties are identical to those previ-

ously presented in Table 1.

As observed from the numerical and experimental

results, the identified initial static mean modulus of

12.4 MPa can effectively be used as an initial value for this

specific composition cork. Nevertheless, for higher load

conditions, the load–displacement curve starts to evidence

the nonlinear geometric effects, besides the nonlinear

material behaviour clearly shown by the material during

the static compression and tensile tests.

Frequency response analysis

In order to verify and conclude on the validity of the

extensional storage modulus results obtained from the three

characterization methods herein applied, the clamped

beams CA and CB were used in an experimental study to

obtain a set of frequency response functions. These

experimental FRFs are then correlated with the numerical

results using the identified storage modulus.

Nine equally spaced points are defined at each beam and

an instrumented impact hammer (Kistler 9722A2000,

impact tip 9904A) was used to provide the excitation inside

the frequency band of the analysis [0–500] Hz. In order to

measure the beam response, a lightweight miniature accel-

erometer (Dytran 3225F) was applied. A spectral analyser

(DSPT Siglab 2042) was used for the signal acquisition and

conditioning, providing the experimental accelerance FRFs.

Figure 27 depicts the experimental setup used in this study.

Using the proposed finite element, a set of frequency

response functions was calculated. The aluminium material
Fig. 25 Three-point bending test setup
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properties are identical to those presented in Table 1. For

the core material’s storage modulus, a constant value of

20.8 MPa, as determined from the inverse method, and a

value of 12 and 14.2 MPa, as determined from the free

vibration test for beam CA and CB, respectively, was used

to assess the characterization results described along the

previous section.

Figures 28 and 29 compare the experimental driving

point FRF with the numerical results for beam CA and CB,

respectively. As shown by these graphical representations,

as well by the remaining results obtained for the entire set

of analysed degrees of freedom, the numerical results using

the low frequency storage modulus, identified from the

clamped beam free response method, evidence a good

correlation level in the vicinity of the fundamental natural

frequency but are clearly uncorrelated for the frequency

band above this range. On the other hand, when using the

higher constant storage modulus value identified from the

inverse methodology, the numerical results agree well with

the experimental FRFs, especially within this higher fre-

quency range. These observations, which are valid for both

specimens, suggest a non-constant storage modulus func-

tion with a frequency distribution following the results

obtained from the characterization method on the discrete

dynamic system (Fig. 12).

Analysing the mobility functions used in the inverse

identification method (Figs. 20 and 22), in comparison to the

FRFs of the clamped beams (Figs. 28 and 29), it becomes

clear that the fitted model from the inverse identification is

preponderantly ruled by the high frequency contents of the

FRFs. Therefore, the validity of the identified constant

modulus value may be limited to the medium/high frequency

band and may misrepresent the real material’s behaviour for

the low frequency range. This observation is perfectly vali-

dated when analysing the frequency response correlation

indicator, the FRAC function, as depicted in Figs. 30 and 31.

In Figs. 30 and 31, the darker bars (indicated as b)

represent the FRAC results when comparing the experi-

mental data with the numerical results considering a con-

stant storage modulus of 20.8 MPa. This correlation

indicator was calculated considering the entire set of FRFs,

for the nine measured degrees of freedom, but does not

consider the low frequency range (\100 Hz). On the other

hand, the lighter bars (indicated as a) are related to the

correlation indicator between the experimental data and the
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numerical results for the low frequency storage modulus,

identified from the free vibration analysis on these clamped

beams (12 and 14.2 MPa). The correlation results are

restricted to a narrow frequency range centred at the fun-

damental natural frequency of each beam. It is worthy to

mention that the relatively lower correlation indicator for

beam CA for the low frequency results is primarily caused

by the effects of free body modes of the experimental setup

on the measured set of FRFs (clamping assembly is

mounted on a stiff optical breadboard supported by rubber

pads).

Based on the correlation indicators, it can be concluded

that the storage modulus shall be described by a frequency

dependent function, especially for the low frequency range.

Nevertheless, it seems to be plausible to assume that, for

higher frequencies, the storage modulus function has a

horizontal asymptote, where a constant value can be used

without a major loss of accuracy.

Conclusions

This study presents a comparative analysis of several

methodologies for experimental characterization of the

static and dynamic properties of composition corks for

vibration damping applications. In addition, an efficient

beam finite element model based on a mixed formulation is

proposed, implemented and applied as a valuable tool for

inverse identification methodologies, to verify the results

obtained and thus assess the different characterization

methodologies.

Concerning the static modulus, i.e., Young’s modulus,

the results obtained are in perfect accordance to the usual

behaviour of a cellular material and can be compared to

those values presented in the literature for other composi-

tion corks and natural corks. The micromechanics of the

cellular structure is the major responsible for the observed

behaviour of the cork specimens under compression or

tensile loading. The results obtained from the static char-

acterization procedures shall be regarded with confidence,

as experimentally and numerically assessed in this study.

While common polymeric-based damping materials are

straightforwardly described by a frequency-dependent

hysteretic model, or viscoelastic model, the cellular struc-

ture of the cork observed from SEM images suggests a

significant contribution of a viscous damping mechanism

onto the dynamic behaviour of the composition cork, with

special relevance at the low frequency range. In fact, the

experimental results provide some evidences of this

behaviour for low frequencies, both in terms of the storage

modulus and loss factor. This behaviour suggests that the

gaseous substance trapped inside each cork’s cell acts as an

air spring with significant effect for low frequencies.

For higher frequencies, and inherently lower levels of

deformation, the air spring and the viscous damping effects

lose significance, while the effect of the viscoelastic nature

of the cell wall’s material becomes more important and

rules the dynamic behaviour of the composition cork.

Furthermore, for the higher frequency range, the poly-

meric-based adhesive used as binding agent evidences its

viscoelastic nature. Nevertheless, SEM analysis onto the

interface region between adjacent cork grains show that the

amount of binding agent is minimal, which may reduce the

effect of this added component onto the composition cork

behaviour.

While the loss factor results obtained from the different

characterization strategies are consistent, and indicate a

constant mean value of 10% for the frequency range herein

considered, the storage modulus results present some dis-

crepancy (frequency-dependent function ranging from 12

to 21 MPa) but the values obtained have the same order of

magnitude and provide a confidence interval describing the

storage modulus for the studied composition cork.

The proposed finite element proved to be accurate and

valuable for the simulation of multilayer sandwich beams

with high stiffness ratios. The mixed formulation allows to

directly impose the displacement and stress fields conti-

nuity conditions at the layer’s interface, as well as to pre-

scribe the free face stress field conditions.
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Appendix: Composition cork description

Manufacturer’s specification:

Manufacturer: ACC—Amorim Cork Composite

(Portugal)

Material reference: CAI 8003

Binding agent: Polyurethane

Grain size: Small (size range: 0.5–1.0 mm)

Grain density: Low density

Specific weight: 170–240 kg/m3

References

1. Nashif AD, Jones DIG, Henderson JP (1985) Vibration damping,

1st edn. John Wiley & Sons, New York

2. Jones DIG (2001) Handbook of viscoelastic vibration damping,

1st edn. John Wiley & Sons, New York

J Mater Sci (2010) 45:3350–3366 3365

123



3. Moreira RAS, Dias Rodrigues J (2006) Int J Struct Stab Dyn

6(3):397

4. Moreira RAS, Dias Rodrigues J (2010) J Sandwich Struct Mater

12:181

5. Santos Silva J, Moreira RAS, Dias Rodrigues J (2010) J Sand-

wich Struct Mater. doi:10.1177/1099636209104538

6. Dias Rodrigues J, Moreira RAS (2007) Sandwich structures with

cork compound layers: a new vibration control solution. POCI/

EME/61967/2004 Final Report, FEUP/UA

7. Gibson LJ, Easterling KE, Ashby MF (1981) Proc R Soc Lond A

337:99

8. Fortes MA, Rosa ME, Pereira H (2004) A cortiça. IST Press,

Lisboa

9. Gibson LJ, Ashby MF (1997) Cellular solids, 2nd edn. Cam-

bridge University Press, Cambridge

10. Mano JF (2002) J Mater Sci 37:257. doi:10.1023/A:10136358

09035

11. Pereira H (2007) Cork: biology, production and uses, 1st edn.

Elsevier, Amsterdam

12. Castro O, Silva JM, Devezas T, Silva A, Gil L (2010) Mater Des

31(1):425

13. Silva SP, Sabino MA, Fernandes EM, Correlo VM, Boesel LF,

Reis RL (2005) Int Mater Rev 50(6):345

14. Anjos O, Pereira H, Rosa ME (2006) II Latin American IUFRO

Congress, La Serena, Chile, October 23–27, 2006 (In Cd Rom)

15. Giunchi A, Versari A, Parpinello GP, Galassi S (2008) J Food

Eng 88(4):576

16. Gil L (2009) Materials 2:776

17. Reis L, Silva A (2009) J Sandwich Struct Mater 11(6):487

18. Moreira RAS, Dias Rodrigues J (2004) J Vib Control 10(4):575

19. Moreira RAS, Dias Rodrigues J, And Ferreira AJM (2006)

Comput Mech 37(5):426

20. Moreira RAS, Dias Rodrigues J (2006) Comput Struct 84(19–20):

1256

21. Moreira RAS, Dias Rodrigues J (2010) Compos Struct 92:201

22. Auricchio F, Sacco H (1999) Int J Numer Methods Eng

44(10):1481

23. Hughes TJR (1987) The Finite Element Method: linear static and

dynamic finite element analysis, 1st edn. Prentice-Hall, New

Jersey

24. Cook RD, Malkus DS, Plesha ME (1989) Concept and applica-

tions of finite element analysis, 3rd edn. John Wiley & Sons

(International Edition)

25. Piam THH, Sze K-Y (2001) Adv Struct Eng 4(1):13

26. Brezzi F, Fortin M (1991) Mixed and hybrid finite element

methods. Springer-Verlag, New York

27. Ross D, Ungar EE, Kerwin EM Jr (1959) Damping of plate

flexural vibrations by means of viscoelastic laminae, Structural

Damping. ASME Publication, New York, p 49

28. Moreira RAS, de-Carvalho R (2009) Int J Mater Eng Innov

1(2):254

29. Zang C, Grafe H, Imregun M (2001) Mech Syst Signal Process

15(1):139

30. Pascual R, Golinval JC, Razeto M (1997) Proceedings of the 15th

Int. Modal Analysis Conference (IMAC XV), Orlando, FL, USA,

p 587

3366 J Mater Sci (2010) 45:3350–3366

123

http://dx.doi.org/10.1177/1099636209104538
http://dx.doi.org/10.1023/A:1013635809035
http://dx.doi.org/10.1023/A:1013635809035

	Static and dynamic characterization of composition cork  for sandwich beam cores
	Abstract
	Introduction
	Finite element formulation
	Displacement field
	Strain field
	Stress field
	Variational formulation
	Condensed displacement-based stiffness matrix
	Mass matrix
	Damping model

	Experimental characterization of a composition cork
	Static characterization
	Compressive test
	Tensile test

	Dynamic characterization
	Direct identification: semi-definite dynamic system
	Inverse identification: free-vibration based
	Inverse identification: FRF based

	Characterization data analysis

	Experimental and numerical analysis of composition cork sandwich beams
	Three-point bending test
	Frequency response analysis

	Conclusions
	Acknowledgements
	Appendix: Composition cork description
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


